OKLAHOMASTATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Fall 2000 Final Exam

Name : ______

Student ID: _____

E-Mail Address:_____

Problem 1:

In the circuit shown below, $v_i(t)$ is a voltage source and nonlinear resistor obeys the relation $i_R = 1.5v_R^3$. $v_i(t)$ is the circuit input and $v_R(t)$ is the circuit output. Derive the differential equation for this circuit. Linearize this differential equation for the case when the circuit operates about the point $v_i = 14$.

Problem 2:

Let I_i be an eigenvalue of a matrix A and let v^i be the corresponding eigenvector. Let

 $f(\mathbf{I}) = \sum_{k=0}^{l} \mathbf{a}_{k} \mathbf{I}^{k}$ be a polynomial with real coefficients \mathbf{a}_{k} . Show that $f(\mathbf{I}_{i})$ is an eigenvalue of the

matrix function $f(A) = \sum_{k=0}^{l} \mathbf{a}_{k} A^{k}$ with the same coefficients \mathbf{a}_{k} . Determine the eigenvector corresponding to eigenvalue $f(\mathbf{l}_{i})$.

Problem 3:

For the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix},$$

determine the functions of matrix A, $e^{\cos At}$.

Problem 4:

Find an "equivalent" continuous-time Jordan-canonical-form dynamical equation of

$$\begin{bmatrix} x_{1}(k+1) \\ x_{2}(k+1) \\ x_{3}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -3 \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \\ x_{3}(k) \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ -1 & 1 \end{bmatrix} u(k),$$
$$y(k) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \\ x_{3}(k) \end{bmatrix}.$$

Problem 5:

Show that if all eigenvalues of A are distinct, then $(sI - A)^{-1}$ can be expressed as

$$(sI - A)^{-1} = \sum_{i} \frac{1}{s - \boldsymbol{I}_{i}} q_{i} p_{i}$$

where q_i and p_i are right and left eigenvectors of A associated with I_i .

Note: q_i is a *right* eigenvector of *A* associated with \mathbf{I}_i , $Aq_i = \mathbf{I}_i q_i$ and p_i is a *left* eigenvector of *A* associated with \mathbf{I}_i , $p_i A = \mathbf{I}_i p_i$.