$\begin{array}{llllllllllllllllllllllll}\mathbf{O} & \mathbf{K} & \mathbf{L} & \mathbf{A} & \mathbf{H} & \mathbf{O} & \mathbf{M} & \mathbf{A} & \mathbf{S} & \mathbf{T} & \mathbf{A} & \mathbf{T} & \mathbf{E} & \mathbf{U} & \mathbf{N} & \mathbf{I} & \mathbf{V} & \mathbf{E} & \mathbf{R} & \mathbf{S} & \mathbf{I} & \mathbf{T} & \mathbf{Y}\end{array}$ SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems
Fall 2000
Final Exam

Name : \qquad

Student ID: \qquad

E-Mail Address:

Problem 1:

In the circuit shown below, $v_{i}(t)$ is a voltage source and nonlinear resistor obeys the relation $i_{R}=1.5 v_{R}^{3} . v_{i}(t)$ is the circuit input and $v_{R}(t)$ is the circuit output. Derive the differential equation for this circuit. Linearize this differential equation for the case when the circuit operates about the point $v_{i}=14$.

Problem 2:

Let λ_{l} be an eigenvalue of a matrix A and let v^{i} be the corresponding eigenvector. Let $f(\lambda)=\sum_{k=0}^{l} \alpha_{k} \lambda^{k}$ be a polynomial with real coefficients $\boldsymbol{\alpha}_{k}$. Show that $f\left(\lambda_{l}\right)$ is an eigenvalue of the matrix function $f(A)=\sum_{k=0}^{l} \alpha_{k} A^{k}$ with the same coefficients $\boldsymbol{\alpha}_{k}$. Determine the eigenvector corresponding to eigenvalue $f\left(\boldsymbol{\lambda}_{i}\right)$.

Problem 3:

For the matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right],
$$

determine the functions of matrix $A, e^{\cos A t}$.

Problem 4:

Find an "equivalent" continuous-time Jordan-canonical-form dynamical equation of

$$
\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & -4 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
1 & 2 \\
-1 & 1
\end{array}\right] u(k),
$$

$$
y(k)=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]
$$

Problem 5:

Show that if all eigenvalues of A are distinct, then $(s I-A)^{-1}$ can be expressed as

$$
(s I-A)^{-1}=\sum_{i} \frac{1}{s-\lambda_{i}} q_{i} p_{i}
$$

where q_{i} and p_{i} are right and left eigenvectors of A associated with λ_{i}.
Note: q_{i} is a right eigenvector of A associated with $\lambda_{i}, A q_{i}=\lambda_{i} q_{i}$ and p_{i} is a left eigenvector of A associated with $\lambda_{i}, p_{i} A=\lambda_{i} p_{i}$.

